Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
N Biotechnol ; 77: 161-175, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-37673372

RESUMEN

Scientific information extraction is fundamental for research and innovation, but is currently mostly a manual, time-consuming process. Text Mining tools (TMTs) enable automated, accurate and quick information extraction from text, but there is little precedent of their use in the biomaterials field. Here, we compare the ability of various TMTs to extract useful information from biomaterials abstracts. Focusing on the biocompatibility of polydioxanone, a biodegradable polymer for which there are relatively few scientific publications, we tested several tools ranging from machine learning approaches and statistical text analysis to MeSH indexing and domain-specific semantic tools for Named Entity Recognition. We also evaluated their output alongside a manual review of systematic reviews and meta-analyses. The findings show that TMTs can be highly efficient and powerful for mapping biomaterials texts and rapidly yield up-to-date information. Here, TMTs enable one to identify dominating themes, see the evolution of specific terms and topics, and learn about key medical applications in biomaterials literature over the years. The analysis also shows that ambiguity around biomaterials nomenclature is a significant challenge in mining biomedical literature that is yet to be tackled. This research showcases the potential value of using Natural Language Processing and domain-specific tools to extract and organize biomaterials data.


Asunto(s)
Materiales Biocompatibles , Polidioxanona , Revisiones Sistemáticas como Asunto , Minería de Datos , Polímeros
2.
Adv Healthc Mater ; 12(25): e2300150, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37563883

RESUMEN

Biomaterials research output has experienced an exponential increase over the last three decades. The majority of research is published in the form of scientific articles and is therefore available as unstructured text, making it a challenging input for computational processing. Computational tools are becoming essential to overcome this information overload. Among them, text mining systems present an attractive option for the automated extraction of information from text documents into structured datasets. This work presents the first automated system for biomaterial related information extraction from the National Library of Medicine's premier bibliographic database (MEDLINE) research abstracts into a searchable database. The system is a text mining pipeline that periodically retrieves abstracts from PubMed and identifies research and clinical studies of biomaterials. Thereafter, the pipeline identifies sixteen concept types of interest in the abstract using the Biomaterials Annotator, a tool for biomaterials Named Entity Recognition (NER). These concepts of interest, along with the abstract and relevant metadata are then deposited in DEBBIE, the Database of Experimental Biomaterials and their Biological Effect. DEBBIE is accessible through a web application that provides keyword searches and displays results in an intuitive and meaningful manner, aiming to facilitate an efficient mapping and organization of biomaterials information.


Asunto(s)
Acceso a la Información , Minería de Datos , Estados Unidos , Minería de Datos/métodos , PubMed , Bases de Datos Factuales , Programas Informáticos
4.
Pharmaceuticals (Basel) ; 14(3)2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33800393

RESUMEN

eTRANSAFE is a research project funded within the Innovative Medicines Initiative (IMI), which aims at developing integrated databases and computational tools (the eTRANSAFE ToxHub) that support the translational safety assessment of new drugs by using legacy data provided by the pharmaceutical companies that participate in the project. The project objectives include the development of databases containing preclinical and clinical data, computational systems for translational analysis including tools for data query, analysis and visualization, as well as computational models to explain and predict drug safety events.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA